Research Paper: Active Computerized Pharmacovigilance Using Natural Language Processing, Statistics, and Electronic Health Records: A Feasibility Study
نویسندگان
چکیده
OBJECTIVE It is vital to detect the full safety profile of a drug throughout its market life. Current pharmacovigilance systems still have substantial limitations, however. The objective of our work is to demonstrate the feasibility of using natural language processing (NLP), the comprehensive Electronic Health Record (EHR), and association statistics for pharmacovigilance purposes. DESIGN Narrative discharge summaries were collected from the Clinical Information System at New York Presbyterian Hospital (NYPH). MedLEE, an NLP system, was applied to the collection to identify medication events and entities which could be potential adverse drug events (ADEs). Co-occurrence statistics with adjusted volume tests were used to detect associations between the two types of entities, to calculate the strengths of the associations, and to determine their cutoff thresholds. Seven drugs/drug classes (ibuprofen, morphine, warfarin, bupropion, paroxetine, rosiglitazone, ACE inhibitors) with known ADEs were selected to evaluate the system. RESULTS One hundred thirty-two potential ADEs were found to be associated with the 7 drugs. Overall recall and precision were 0.75 and 0.31 for known ADEs respectively. Importantly, qualitative evaluation using historic roll back design suggested that novel ADEs could be detected using our system. CONCLUSIONS This study provides a framework for the development of active, high-throughput and prospective systems which could potentially unveil drug safety profiles throughout their entire market life. Our results demonstrate that the framework is feasible although there are some challenging issues. To the best of our knowledge, this is the first study using comprehensive unstructured data from the EHR for pharmacovigilance.
منابع مشابه
Extracting Concepts Related to a Homelessness from the Free Text of VA Electronic Medical Records
Mining the free text of electronic medical records (EMR) using natural language processing (NLP) is an effective method of extracting information not always captured in administrative data. We sought to determine if concepts related to homelessness, a non-medical condition, were amenable to extraction from the EMR of Veterans Affairs (VA) medical records. As there were no off-the-shelf products...
متن کاملNatural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
The goal of pharmacovigilance is to detect, monitor, characterize and prevent adverse drug events (ADEs) with pharmaceutical products. This article is a comprehensive structured review of recent advances in applying natural language processing (NLP) to electronic health record (EHR) narratives for pharmacovigilance. We review methods of varying complexity and problem focus, summarize the curren...
متن کاملToward a Natural Language Interface for EHR Questions
This paper presents a pilot study on the process of manually annotating natural language EHR questions with a formal meaning representation. This formal representation could then be used as a structured query as part of a natural language interface for electronic health records. This study analyzes the challenges of representing EHR questions as structured queries as well as the feasibility of ...
متن کاملElectronic medical records for clinical research: application to the identification of heart failure.
OBJECTIVE To identify patients with heart failure (HF) by using language contained in the electronic medical record (EMR). METHODS We validated 2 methods of identifying HF through the EMR, which offers transcription of clinical notes within 24 hours or less of the encounter. The first method was natural language processing (NLP) of the EMR text. The second method was predictive modeling based...
متن کاملProbabilistic Case Detection for Disease Surveillance Using Data in Electronic Medical Records
This paper describes a probabilistic case detection system (CDS) that uses a Bayesian network model of medical diagnosis and natural language processing to compute the posterior probability of influenza and influenza-like illness from emergency department dictated notes and laboratory results. The diagnostic accuracy of CDS for these conditions, as measured by the area under the ROC curve, was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Medical Informatics Association : JAMIA
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2009